THE ROLE OF a-CLEAVAGE IN THE PHOTOCHEMISTRY OF A-HOMO-4A-CHOLESTENE-3-ONE STRUCTURE REVISION OF PHOTOPRODUCTS

Jeffrey I. Seeman and Herman Ziffer

National Institute of Arthritis, Metabolism and Digestive Diseases National Institutes of Health, Bethesda, Maryland 20014

(Received in USA 30 July 1973; received in UK for publication 25 September 1973)

Postulates for the mechanism of the singlet 1,3-acyl shift of β,γ -unsaturated ketones have ranged from concerted processes¹ to stepwise reactions involving either intimate radical pairs² or biradicals³ obtained from initial α -cleavage. Although there are examples of stereospecific 1,3-acyl migrations,² numerous β,γ -unsaturated ketones decarbonylate,⁴ form unsaturated aldehydes,^{2,3b,5} and undergo other radical-type processes.⁶ In order to study the chemistry of biradicals obtained by α -cleavage of β,γ -unsaturated ketones, we elected to examine the photochemistry of three compounds (1-3) which on α -cleavage could yield the same biradical. Fischer and Zeeh⁷ had examined the photochemistry of the A-homocholestenone 1 and reported that on direct irradiation 1 yielded a minor (MN) and major (MJ) photoproduct which they assigned (incorrectly, see below) as 2 and 3 respectively.

Since Fischer and Zeeh's structure assignments for 2 and 3 conflict with two interpretations (see below) of the observed photochemistry, a more rigorous structure determination was desirable. This was achieved by an unambiguous synthesis of 5 β -ethyl-A-norcholestanone (5). The 1,4-addition of lithium diethylcopper to Δ^4 -cholesten-3-one (6) yielded 5 β -ethylcholestan-3-one (7c) whose stereochemistry was assigned by the method of synthesis⁸ and a comparison of CD/ORD spectra (Table 1). The intermediate enolate from 6 and lithium diethylcopper was trapped with diethyl phosphochloridate⁸ yielding the enol phosphate 8. Reduction of 8 with lithium/ethyl amine in the presence of t-butanol⁸ yielded 9 which was ozonized and oxidized to the diacid. 56-Ethyl-A-norcholestan-3-one (5) was prepared by esterification of the diacid followed by Dieckmann condensation to 10 (potassium t-butoxide/t-butanol), hydrolysis (HC1/HOAc) and decarboxylation. A comparison of 5 with dihydro-MJ showed them to be identical and quite different from the dihydro-MN. Therefore, the structure of MJ is 2 and MN is 3, <u>reversing</u> the previous assignment by Fischer and Zeeh.⁷

11a, 4α , 5α -methano b, 4β , 5β -methano

Photolysis of 3 in t-butanol yielded 2 as demonstrated by isolation and spectroscopic comparison. No other photoproduct was observed by glpc conditions in which >2% of 1 would have been observed. The quantum yield for the formation of 2 from 3 was approximately one-third that of 2 and 3 from 1. These results, in conjunction with the absence of detectable quantities of 1 in the irradiation of 3, suggest that the reaction simply involves α -cleavage and recombination rather than the sequence 3 + 1 + 2. However, 2 was photostable under conditions in which 90% of 3 is converted to 2. Irradiation of 2 and 3 in acetone lead in each case to the formation of 11a and 11b respectively.⁹ The stereospecificity of the observed oxa-di- Π -methane rearrangement and the failure to observe 2 (or 3) in the acetone sensitized irradiation of 3 (or 2) proves that triplet photoepimerization (α -cleavage) does not occur. These results indicate (1) that the conversion of 3 + 2 in t-butanol is a singlet reaction¹⁰ and (2) that either 2 and 3 do not intersystem cross, or the oxa-di- Π -methane rearrangements are far less efficient than the epimerization of 3.

The conversion of $3 \rightarrow 2$ must involve α -cleavage and recombination of the resulting biradical. However, 2 did not isomerize to either 3 or 1 and thus was remarkably photostable. (See eq. 1.) Three postulates can be advanced to explain these results. First,

Comp'd.	CD, θ, nm [ORD, φ nm]	Comp'd.	CD, θ , nm
7a	$[+4000 (310)^{a,d}]$	4	- 4,200° (295) ^{b,d}
7ъ	~ 950° (290) ^e	5	+ 2,620° (305) ^e
7c	- 1,075° (290) ^e	12a	+ 6,310° (305) ^{c,e}
2	+10,000° (300) ^e	12c	+ 2,177° (305) ^{c,e}
3	-13,400° (300) ^{b,d}		

Table 1. CD and ORD Data

^aW. Nagata, S. Hirai, H. Itazaki and K. Taketa, Justus Liebigs Ann. Chem. <u>641</u>, 184 (1961).
^bRef. 7. ^CA generous sample of 12 was supplied by Dr. G. Shaffer. ^d95% EtOH as solvent.
^eMeOH as solvent.

the nature of the A-B ring fusion in these A-nor steroids could markedly affect the rate of α -cleavage. Yang has suggested¹³ that relief of steric strain at the transition state increases the rate of α -cleavage in <u>trans</u>-8-methyl-1-hydrindanone relative to the <u>cis</u> isomer. Second, the ring closure of biradical intermediates may be stereoelectronically controlled. For example, Yang¹³ has examined the stereochemistry of ring closure of biradicals derived from saturated bicyclic ketones and concluded that these intermediates exhibit a preference for axial ring closure. Third, the mode of ring closure may instead reflect some conformational preference of the intermediate biradicals. The failure of either 2 or 3 to yield 1 may be due to the much greater ease of formation of a five membered ring relative to a seven-membered one.

The observation of the photolability of 3 compared to 2 can be used to assign the stereochemistry of the photoproduct (12a or 12b) obtained from the photolysis of 13 by G. W. Shaffer.¹⁴ Shaffer reported that this photoproduct was fairly stable when irradiated in isopropanol yielding 5-10% of a compound whose retention time was identical to 13. These results strongly suggest that the stereochemistry at the ring junction is <u>cis</u>, i.e. 12a. This conclusion is also supported by a comparison of the c.d. spectrum of 12a and

12a, $R = \alpha - vinyl$ b, $R = \beta - viny1$ c, $R = \alpha$ -ethyl

12c with those of 2-5, (Table 1).

In addition to the structure revision of the photoproducts, we have found (1) the first example of singlet photoepimerization of a β , γ -unsaturated ketone; (2) that the singlet α -cleavage and recombination is a highly stereoselective process; (3) the absence of triplet α -cleavage for 2 and 3; and (4) support for formation of 2 from 1 <u>via</u> either a concerted path or intimate radical pair but not <u>via</u> a long lived biradical.

REFERENCES

- (a) R. S. Givens and W. F. Oettle, J. Amer. Chem. Soc., <u>93</u>, 3963 (1971); (b) E. Baggiolini, K. Schaffner and O. Jeger, <u>Chem. Commun.</u>, 1103 (1969).
- (2) H. Sata, N. Furutachi and K. Nakanishi, J. Amer. Chem. Soc., 94, 2150 (1972).
- (3) (a) J. K. Crandall, J. P. Arrington and J. Hen, <u>ibid.</u>, <u>89</u>, 6208 (1967); (b) R. G. Carlson and J. H. Bateman, <u>Tetrahedron Letts.</u>, 4151 (1967).
- (4) (a) J. E. Starr and R. H. Eastman, <u>J. Org. Chem.</u>, <u>31</u>, 1393 (1966); (b) L. D. Hess and J. N. Pitts, <u>J. Amer. Chem. Soc.</u>, <u>89</u>, 1973 (1967); (c) P. S. Engel and M. A. Schexnayder, <u>1bid.</u>, <u>94</u>, 4357 (1972).
- (5) K. Kojima, K. Saka and K. Tanabe, Tetrahedron Letts., 3399 (1969).
- (6) (a) R. C. Cookson and N. R. Rogers, <u>Chem. Commun.</u>, 809 (1972); (b) W. G. Dauben, G. W. Shaffer and N. D. Vietmeyer, <u>J. Org. Chem.</u>, <u>33</u>, 4060 (1968).
- (7) M. Fischer and B. Zeeh, Chem. Ber., 101, 2360 (1968).
- (8) (a) R. E. Ireland and G. Pfister, <u>Tetrahedron Letts</u>., 2145 (1969); (b) D. C. Muchmore, <u>Org. Syn.</u>, <u>52</u>, 109 (1972).
- (9) J. I. Seeman and H. Ziffer, Tetrahedron Letts., 1973, following paper.
- (10) The multiplicity from which photoepimerization occurs in this work differs from that of Chambers and Marples¹¹ who noted triplet (but not singlet) epimerization for a steroid β , γ -unsaturated ketone. However Schaffner et al.^{1b,12} have also failed to observe triplet α -cleavage in two cases under conditions where α -cleavage would have been observable.
- (11) R. J. Chambers and B. A. Marples, <u>Tetrahedron Letts</u>., 3747, 3751 (1971).
- (12) S. Domb and K. Schaffner, Helv. Chim. Acta., 53, 677 (1970).
- (13) N. C. Yang and R. H. K. Chen, J. Amer. Chem. Soc., 93, 531 (1971).
- (14) G. W. Shaffer, J. Org. Chem., 37, 3282 (1972).